

Fuel Cell R&D

Valri Lightner, Fuel Cell Team Leader

Jesse Adams (GO)

Kathi Epping

John Garbak

Nancy Garland

Jill Gruber (GO)

Donna Ho

Amy Manheim

Jason Marcinkoski

David Peterson (GO)

Reginald Tyler (GO)

2006 DOE Hydrogen Program

Merit Review and Peer Evaluation Meeting

Challenges

- Durability
- Cost
- Electrode Performance
- Water Transport Within the Stack
- Thermal, Air and Water Management
- Start-up Time and Energy

Cost and durability present two of the more significant technical barriers to the achievement of clean, reliable, cost-effective systems.

Key Targets

Integrated Transportation Fuel Cell Power System (80 kW_e) Operating on Direct Hydrogen

- \$45/kW by 2010
- \$30/kW by 2015
- 5,000 hours durability by 2010 (80°C)

Other Key Targets

Distributed Energy (PEMFC)

- \$750/kW by 2011
- 40,000 hours durability by 2011
- 40% electrical efficiency

Auxiliary Power Units (SOFC)

- Specific power of 100 W/kg by 2010
- Power density of 100 W/L by 2010

Consumer Electronics (DMFC)

 Energy density of 1,000 W-h/L by 2010

Transportation Fuel Cell System Targets & Progress

Characteristic		2003 Status	2005 Status	2015 Target
Cost	\$/kW	200	110	30
Precious metal loading	g/kW (rated)	<2.0	1.1	0.2
Power density	W/L	440	525	650
Lifetime (durability w/ cycling)	hr	N/A	~1,000	5,000
Start-up time to 50% of rated power at:				
-20°C ambient temp	sec	120	20	30
+20°C ambient temp	sec	60	<10	5
Start-up and shut down energy at:				
-20°C ambient temp	MJ	na	7.5	5
+20°C ambient temp	MJ	na	na	1

Targets & Progress: Reduced Cost and Increased Durability

Fuel Cell System (80 kW) Costs Status vs. Targets

Fuel Cell Stack (only) Durability Status vs. Targets

Strategy

- Primary focus is on fuel cells for transportation applications
- R&D is focused on components rather than systems

Membranes

Bipolar Plates

Electrodes

Seals

Membrane Electrode
Assemblies

Balance-of-plant Components

Gas Diffusion Layers

Innovative Concepts

Analysis, Characterization and Benchmarking

Solicitation and Lab Call for \$100 million over 2-4 years: closed April 7; selections expected in the fall

Strategy

 Secondary focus is on stationary and other early market fuel cells to establish the manufacturing base

Distributed Power

- Improve system durability
- Improve stack performance w/ reformate
- Improve fuel processor performance
- Increase system electrical efficiency

APUs

- Develop diesel fuel processor
- Develop FC that operates on reformate
- Design, build, & test under real-world conditions

Portable Power

- Develop membranes to reduce methanol crossover
- Design, build, & test under real-world conditions

Fuel Cell Budget

□ Transportation Systems □ Distributed Energy Systems □ Stack Component □ Fuel Processor ■ Tech Support

Results: R&D Highlights

Catalysts (Pt Alloy)

- Achieved state-of-the-art Pt-alloy mass activities (0.26A/mg_{Pt}) in durable whisker electrode structure (3M)
- Improved MEA lifetime under harsh FC conditions (3M)
- Achieved mass activity 4x that of Pt (BNL)

BNL,

MEA testing at LANL

Catalysts (Non-Pt)

- 10X increase in catalyst layer while maintaining mass transport (LANL)
- Metal-free carbon based catalyst with activity approaching other non-pt metal catalysts (USC)
- Reduced H₂O₂ generation by more than 70% (USC)

Air-electrode behavior of equal loadings of Pt & non-Pt (cobalt-based) catalysts, **LANL**

Results: R&D Highlights

Characterization

 Achieved real-time imaging of water in FC components during transients (NIST)

• Developed microstructural characterization of PEM FC

MEAs (ORNL)

TEM image showing the distribution of Pt catalyst (ORNL)

NIST's New BT-2 Neutron Imaging Facility

Water Management Freeze (sub-freeze)

- Accomplished dynamic model of freeze start showing self start possible when specific gravity of ice formation is >0.5 (ANL)
- Identified delamination of cathode catalyst, but only at <-40°C (LANL)

SEM micrograph after 10 cycles from -80 to 80°C, **LANL**

Modeled startup from subfreezing conditions (<30 s), **ANL**

Results: R&D Highlights

Recycling

- Developed first operating FC with remanufactured membrane/down-select of Pt separation procedures (Ion Power, Engelhard)
- Developed testing procedures determining catalyst separation of used MEAs from polymers for use in new MEAs (Ion Power)
- Developed more conventional Pt-recycling approach (Engelhard)

Membrane Durability

 Identified chemical and mechanical modes of degradation and demonstrated a coupling between the two modes (DuPont/UTC)

from Fundamentals to Stack. **DuPont**

For More Information

DOE Fuel Cell Team

Valri Lightner, Team Leader

Overall Fuel Čell Systems/ FreedomCAR Tech Team/IPHE 202-586-0937

Valri.Lightner@ee.doe.gov

Jesse Adams

Fuel Cells 303-275-4954

<u>jesse.adams@go.doe.gov</u>

Kathi Epping

Stationary & Back-Up/Fuel Processing 202-586-7425

Kathi.Epping@ee.doe.gov

John Garbak

Vehicle Demo/APU's/Compressors 202-586-1723

John.Garbak@ee.doe.gov

Nancy Garland

National Lab R&D/ HT Membrane/IEA ExCo 202-586-5673

Nancy.Garland@ee.doe.gov

Jill Gruber

Fuel Cells 303-275-4961

jill.gruber@go.doe.gov

Donna Ho

BOP/Cost Analyses/ Portable Power/Catalysts/Bipolar Plates/SBIR 202-586-8000

Donna.Ho@ee.doe.gov

Amy Manheim

Membranes/MEAs 202-586-1507

Amy.Manheim@ee.doe.gov

David Peterson

Fuel Cells 303-275-4956

david.peterson@go.doe.gov

Reginald Tyler

Fuel Cells 303-275-4929

reginald.tyler@go.doe.gov